

Benchmarking Deep Reinforcement Learning Methods

for Decentralized Multi-Robot Exploration

by

Richard Ren

Supervisor: Goldie Nejat

April 2022

B.A.Sc. Thesis

__
___________________________________ ___
___________________________________ ___
___________________________________ ___
___________________________________ ___

Abstract

The traditional algorithms in multi-robot exploration fail to generalize
to the diverse, limited communication environments found in urban search
and rescue (USAR) missions. They employ heuristic functions or state fea-
tures that are handcrafted for the specific terrain the methods were designed
for. To alleviate these problems, the state-of-the-art use approaches from
the field of Deep Reinforcement Learning (DRL). As a new field, it suffers
from a lack of reproducibility. Many methods are published, but their per-
formance can neither be verified nor reproduced in a different environment.
From this gap, we developed a simulation environment representative of the
terrain in USAR and ported a DRL method called DME-DRL for evaluation.
We were able to reproduce its relative performance against the traditional
method Nearest Frontier (NF). In the paper, DME-DRL outperformed NF in
the number of time steps using their no-clutter 100% communication suc-
cess environment. In our implementation, DME-DRL underperformed NF
by 6% in the number of time steps in our cluttered 100% communication
success environment with 10% probability of failed action and scan.

i

Acknowledgements

First, I would like to thank my supervisor, Goldie Nejat for provid-
ing me with the opportunity to work on the exciting research at the
Autonomous Systems and Biomechatronics Laboratory. There, I was
mentored by Aaron Tan, who provided invaluable guidance and help-
ful feedback which made this work possible. I would also like to
thank the previous thesis student Federico Pizarro Bejarano who had
paved the foundations for my project and implemented the traditional
exploration methods.

Second, I would like to thank my parents, for their constant love, sup-
port and encouragement through my journey in Engineering Science.

ii

Contents

1 Introduction 1

2 Literature Review 3

2.1 Traditional Methods . 4

2.1.1 Utility-Based Methods 4

2.1.2 Market-Based Methods 7

2.1.3 Planning-Based Methods 8

2.2 DRL Methods . 10

2.3 Benchmark Method . 12

2.3.1 Selection . 12

2.3.2 Network Architecture . 13

2.3.3 MADDPG . 14

2.3.4 Training and Evaluation 16

3 Methods 19

3.1 Simulation Design . 19

3.1.1 Environment . 19

3.2 Robot Design . 20

3.2.1 Scan Protocol . 20

3.2.2 Communication Protocol 21

3.3 Modifications to DME-DRL Algorithm 25

3.3.1 Network Architecture . 25

3.3.2 Training Hyperparameters 25

3.3.3 Communication Protocol 25

iii

3.4 Testing . 27

4 Results and Discussion 30

4.1 Training . 30

4.2 Test . 34

4.2.1 Steps and Distance . 34

4.3 Local Interactions . 39

4.4 Objective Function . 41

4.5 Parallel World . 43

5 Conclusion 45

iv

1 Introduction

In Urban Search And Rescue (USAR) missions, human teams search for trapped

victims in collapsed structures [1]. Within these buildings, the environment is

unstructured, cluttered, and dangerous for humans to explore [2]. Explorers face

hazards from broken wires, natural gas leaks, and the structure caving in. It is

far safer and more efficient to employ a team of robots to traverse such terrains.

However, it is a difficult problem to coordinate a search effort for multiple robots

that maximizes explored area with respect to time. [3]. First, robots do not have a

map of the damaged structure ahead of the rescue so they cannot plan paths in ad-

vance [2]. Second, during exploration, a robot may not know the regions its team

members are exploring or have already explored due to limited communication in

the damaged building [1]. While physical obstructions such as walls and rubble or

electrical interference may impede communication, robot team members are also

unreliable. They may be damaged in a further collapse or their mechanisms could

fail.

Traditionally, Multi-Robot Exploration (MRE) methods were based on crafted

heuristics that made strong assumptions about the optimal location that will gain

the most information about the environment[2]. As an example, [4] assumes ex-

ploring corridors are more desirable because they connect to unexplored rooms on

a floor.

The current state-of-art uses approaches from the field of Deep Reinforce-

ment Learning (DRL) [2]. In Reinforcement Learning (RL), goal-directed agents

attempt to learn a behavior that maximizes a reward signal through interactions

with its environment [5]. In the context of MRE, robots learn how to make the

best decision through their experiences of exploring different environments, where

1

they are rewarded for efficient exploration decisions and punished for inefficient

ones. However, the applications of RL are limited to problems with environ-

ments that have a small state space like board games because of past computa-

tional constraints. Researchers may also reduce the state space by handcrafting

features to encode the state. However, MRE involves environments that have

a very large state space. With the advent of deep learning and the increase in

computational power, DRL uses neural networks with millions of parameters to

encode high-dimension observations of the environment from robot sensors into

low-dimension feature representations and to decide where each robot should ex-

plore next. These parameters are incrementally updated through the interactions

with the environment to develop the desired behavior.

Since DRL is a popular and novel field, many papers are published without

a means to verify results. For instance, authors may omit their implementation

or details about the training hyperparameters or the network architecture that are

needed to replicate the experiments. Even if their implementation is included,

there may be errors in the code or their implementation may not achieve the de-

sired performance. Furthermore, when researchers attempt to test the author’s

methods in different environments, they may find the techniques fail to generalize

[6]. Driven by this need for reproducibility, we seek to develop a USAR simula-

tion environment and then implement a benchmark for MRE. We will examine the

literature on traditional and state-of-the-art methods and implement the algorithm

that satisfies our criteria.

2

2 Literature Review

The multi-robot exploration problem is defined as: given a team of robots, each

possessing a local map and sensors to observe their environment, the objective is

to find the path which minimizes the exploration time or the distance travelled for

each robot, while fully exploring their environment [7]. At each time step of the

episode, robots explore the environment by scanning the environment, and if in the

proximity of a teammate, communicate information [7]. With these observations,

the algorithm must decide a location or direction for each robot to head towards

[7]. Typically, these targets are located on the frontier of the map, which is the

edge between the explored and unexplored area [2].

Existing multi-robot exploration methodologies can be categorized as 1) cen-

tralized [8] and 2) decentralized [8], where the former incorporates a global co-

ordinator which uses all of the robots’ observations to decide the target for each

robot, and the latter allows each robot to use their own observations to select a

target. There are also hybrid architectures which divide the team into subteams

and make decisions using designated subteam coordinators[8]. Once a termina-

tion condition based on the team’s total exploration has been reached, then the

episode has completed.

In the remainder of this section, we review several approaches to MRE to

select an algorithm for implementation. We will first describe traditional methods

and then proceed to the state-of-the-art.

3

2.1 Traditional Methods

Traditional MRE algorithms focus on crafting a heuristic to decide where each

robot should explore. They can be further divided into Utility-based [4, 9, 10] ,

Market-based [11, 12, 13], and Planning [14] methods .

2.1.1 Utility-Based Methods

Utility-based methods include the design of a team utility function and a central-

ized process to match robots with targets that maximize the team utility. There are

three main ideas in utility-based methods. First, they seek to maximize the total

information gain from the unknown environment when assigning a robot to a par-

ticular target. [9] defines information gain as the increase in the knowledge of the

environment, or the reduction of entropy, where entropy represents the uncertainty

in the exploration potential for a particular cell. For instance, [4] assumes corri-

dors have higher semantic information because they can connect to unexplored

rooms on a floor, and incorporate this assumption into their utility function. [4]

tested the performance of their utility function with teams of 5-50 robots in 2D

simulations of floor plans in real buildings such as the Intel Research Labs and

Fort Sam Huston hospital as shown in Figure 1. In Figure 2, by incorporating

semantic information from corridors, they significantly reduced the exploration

time.

Second, there is a distance cost for the robot to travel to the target [4, 9, 10].

Third, there is a factor which discourages robots from exploring the areas near

other members. As an example, [9] greedily matches the robot to the target with

the greatest utility and discounts the remaining targets that are close to those al-

ready selected. [9] tested their greedy discounting method in their physical re-

4

Figure 1: Floor plans of Intel Research Lab (left) and Fort Sam Huston Hospital
(right) [4].

Figure 2: Comparison of results for semantic information utility function (with
estimated/true labels) against no semantic information (standard coordination) [4].

search lab as well as in two 2D simulation environments, one simple and one

complex (Figure 3). In the simulation, they compared against Nearest Frontier

Exploration, MinPos, and Entropy methods (Figure 4) . The Nearest Frontier

Exploration (NFE) is a common benchmark, in which, each robot on the team

5

greedily selects the frontier cell for exploration that is closest to them at that time

step, regardless if other robots select the same or a nearby cell [15]. MinPos ex-

tends NFE, by allowing a robot to select a frontier cell only if it is the closest

robot to the cell [16]. Finally, the Entropy method uses a utility function that only

considers information gain alone [9].

Figure 3: Floor plans of simple (left) and complex (right) 2D test environment [9]

Figure 4: Comparison of results for simple (left) and complex environment (right).
[9]’s proposed coordination methods are labelled with alpha and beta, while NFE,
MinPos, and Entropy are the benchmarks [9].

6

2.1.2 Market-Based Methods

While market-based approaches also employ the concept of utility functions, their

novelty comes from considering the robot team as a market, in which members

trade tasks and resources with one another to maximize individual utility functions

in a manner which also maximizes the team utility function. To achieve this bal-

ance, markets use a single, centralized or multiple subteam auctions which receive

teammates’ bids for tasks and resources, then distribute the targets in a way that

maximizes team utility [11]. Like utility methods, [12] uses a central executive

when assigning robots to targets from the bids they have submitted. In this paper,

a bid is a list of (target, utility) pairs that robots compute independently using their

local observations. [12] tested their method with real robots in Fort Sam Huston

hospital, but published results based on their 2D simulations. They did not bench-

mark against other methods, but measured the amount of time it took for robots to

cover a range of percentage of their environment (50, 90, 95, 100) while varying

the number of robots on the team from 1-3.

However, [13] draws more ideas from markets. First, robots generate a list

of targets to explore, either randomly, greedily, or by recursively dividing the

unknown regions using quadtrees and picking the centres of those regions. Robots

submit their targets in order of increasing utility to the central executive, and the

team members bid for the right to explore the target. They submit a priced bid

if the target is profitable, in other words, the information gained is greater than

the cost to travel to the target. The highest bidder wins the right to explore the

target. [13] tested their market architecture in 3 different real world environments

using a team of 4 robots. The first environment was located indoors in the Field

Robotics Center highbay which is a large, cluttered space that contains furniture

7

and other robots. The second was an outdoor patio with a mix of open areas and

some walls and tables. The third environment was a hotel conference room that

was filled with tablees and people walking around.[13] defined their performance

metric as a quality of exploration Q which is found by dividing the area covered

by the distance travelled by all the robots. Under the market architecture and using

random and quadtree goal generation they were able to achieve a Q of 1.4m2/m,

while greedy goal generation produced a Q of 0.85m2/m. They benchmarked

their results against robots individually generating goals randomly and exploring

which attained a Q of 0.41.

2.1.3 Planning-Based Methods

Planning-Based methods view MRE as a type of Markov Decision Process (MDP)

problem. They seek to determine a policy which maps the robots’ states to prob-

abilities of selecting possible actions at each time step [5]. To improve the policy,

planning methods optimize for a value function [5]. Value functions represent the

total expected return of future rewards for being in a particular state [5]. Rewards

are given at the end of each time step based on the state with respect to the goal

of exploration [5].

In particular, [14] views MRE as a Decentralized Partially Observable Markov

Decision Problem (Dec-POMDP). In a Dec-POMDP, robots do not have access to

the state information, instead they can only partially observe the state due to the

physical limitations of their sensors and communication [17]. Robots use these

observations to maintain a probability distribution over states. They seek to find

the optimal policy by selecting actions to maximize the value function. [14] pro-

poses modifications to Distributed Value Functions (DVF) to solve for the Dec-

8

POMDP and find the optimal policy. Their modifications accommodate for lim-

ited communication and approximations to state transition probabilities for faster

computation. Similar to the methods mentioned above, they tested in both real and

2D simulated office-like environments, but only published numerical results for

the simulations. Instead of benchmarking against common methods, [14] chose

to test different communication schemes and ways to solve the Dec-POMDP. As

shown in Figure 5, permanent communication uses DVFs and achieves the best

result. In experiments that consider communication breaks, the robots either solve

the value functions independently or rely on the modified DVF algorithm. Finally,

in the independent, no communication case robots solve the policy using value it-

eration.

9

Figure 5: Exploration Time for [14]’s method

2.2 DRL Methods

Like Planning Methods, DRL methods seek to learn a policy that optimizes an

objective formulated from efficient exploration and use MDPs for problem for-

mulation. Planning methods use dynamic programming (DP) to solve the MDP,

because they define a perfect model of the environment using handcrafted fea-

tures [5]. However, since USAR environments are dynamic and have a large state

space that cannot be encoded into static, handcrafted features, DRL seeks to de-

velop a model of the environment using learning [2]. In DRL methods, the policy

10

is a neural network. At the end of each time step, the policy is given a reward

based on the current state determined by a reward function. All functions reward

based on the size of the new area that is explored and punish wasted exploration

time [7, 18, 19, 20]. As examples of the latter idea, [7, 20] give a penalty every

time step to encourage the robot to speed up the exploration. Both [7, 20] tested

their idea against the Nearest Frontier Exploration Method as a benchmark with a

team of robots in 2D indoor simulations. By varying the number of robots on the

team from 1-4, [20] reduced the average moving distance per robot by 34-32% in

maze environments and 47-32% in office-like environments. The environments in

DME-DRL were less cluttered, and demonstrated an improvement of 3%.

On the other hand, [18, 19] penalize by accounting for robots retracing ex-

plored areas. [18] tested on a 20x20 grid world with a team of 12 robots. For

a set 65 time steps, the team explored 92.6% of the environment with their pro-

posed method in comparison the Nearest Frontier which achieved 90.4% averaged

over 1000 random maps. As an extension of their method [19] tested in the same

environment with 10 robots over 1000 random maps for 30s. Their new method

explored 95.2% of the environment in comparison with their old method which

covered 89.2%. Both [19, 20] also give a larger, terminal reward that depends on

whether the teams had fully explored the environment at the end of the episode.

Tuples consisting of the observation, action, and the reward, are used to train

the policy under a modified state-of-the-art DRL multi-agent learning paradigm.

[7] uses a modified version of MADDPG [21], while [18] uses the CommNet

architecture [22] and then adds an attention mechanism to produce [19]. These

learning paradigms are categorized as policy gradient methods. These methods

update the parameters of the network in the direction of the gradient to maximize

11

the total expected reward from the entire exploration episode.

2.3 Benchmark Method

2.3.1 Selection

Recall USAR missions occur in collapsed structures, in such uncertain environ-

ments, team members could either be obstructed by physical structures like walls

and rubble or be damaged by sudden impact from a fall or debris [1]. Because of

these conditions we desire a decentralized algorithm, since it can operate under

conditions of limited communication between robots and robot failures. That way

robots are able to decide the target that will maximize the team’s explored area

with only their local information, unless they can come in proximity with another

robot and share information with each other.

We cannot use centralized utility methods that achieve published results when

there is a global coordinator on the team. Global coordinators require constant

communication to receive robot position and observations to select targets. Sim-

ilarly hybridized market-based methods are infeasible since a subteam of robots

may not be close together to form an auction. While planning methods are decen-

tralized, they handcraft robot state features and suffer from the curse of dimen-

sionality when dealing with high-dimensional features [2]. The curse of dimen-

sionality states that high-dimensional features require an exponential increase in

the number of observations for accurate function approximation [23]. However,

each robot has a limited number of observations in each time step. Furthermore,

utility, market, and planning methods involve the design of functions that rely on

tuning hyperparameters sensitive to different environment conditions [2]. Recall

12

that [4] included a semantic information factor encouraging the robots to explore

corridors. However, to achieve better performance in environments with few corri-

dors, it may be advantageous to reduce the weight of semantic information. Thus,

decentralized DRL methods are best suited for our use case. While [18, 19] clas-

sified their DRL algorithm as decentralized, the CommNet architecture requires a

global communication channel that can be accessed by all robots at each time step

[22]. In addition, [20] is a DRL method that merges all of the robot’s observations

to decide where each of the robots should go for each time step. Therefore, we

have selected the paper ”Decentralized exploration of a structured environment

based on multi-agent deep reinforcement learning” (DME-DRL) as our bench-

mark [7].

2.3.2 Network Architecture

In DME-DRL, the goal is finding a path that minimizes travel distance and fully

explores the environment. It applies the MADDPG algorithm to learn the policy.

Each robot has an actor network which acts the policy and decides the direction

to move at each time step as well as the critic network which estimates the value

of the policy. Below, Figure 6 shows the architectures for the actor and critic net-

work.

The inputs into the critic and actor networks are the robot’s observations which

consist of their grid map and a position vector with the positions of the other robots

that it sees at the time step. The actor network actually stacks the observations

for the past 6 time steps. Since the grid map can be thought of as an image, the

convolution and ReLU layer extracts features from the map [24]. Then the features

13

Figure 6: Network architectures for actor and critic models [7].

are augmented by a LSTM layer which considers the history of observations [25].

Finally, the augmented features are passed through the fully connected layer to

produce a value for the critic and a probability vector of actions for the actor.

2.3.3 MADDPG

Multi-agent deep deterministic policy gradient (MADDPG) is a DRL algorithm

used in multi-agent problems.

Previous approaches to multi-agent domain include Q-learning [26], in which

agents attempt to learn their own optimal action-value function Q⇤ which mea-

sures their policy. This is achieved by minimizing the loss between a Q⇤0 which

is a copy of Q that is updated periodically.

L(✓) = Es,a,r,s0 [(Q
⇤(s, a|✓)� y)2]

where y = r + �maxa0Q
⇤0(s0, a0)

However, because agents are learning independently, the environment appears

non-stationary to each of the policies and learning cannot converge [21].

14

Another approach to the multi-agent problem are Policy Gradient methods

[27], which seeks to optimize the parameters ✓ of the policy ⇡ to maximize an

objective function J by making updates in the direction of the r✓J(✓).

The gradient is often in the form of:

r✓J(✓) = Es,a[r✓log⇡✓(a|s)Q(s, a)]

But in multi-agent settings, an agent’s reward depends on the actions of other

agents and this results in high variance in the gradients [21]. Deep Determin-

istic Policy Gradients [28] are a subset of policy gradient methods that asserts

the policy µ always chooses the same action given a state rather than produce a

probability distribution based on a state. As a result the gradient becomes:

r✓J(✓) = Es[r✓µ✓(a|s)raQ(s, a)|a=µ(s)]

MADDPG extends DDPG and seeks to remedy the high variance and non-

stationarity problems associated with the multi-agent domain. It relies on the

centralized training decentralized execution (CTDE) and actor-critic framework

[21]. Each robot has an actor that decides the actions at each time step with local

information and a critic network which evaluates the actor’s policy. During train-

ing, the critic network is granted access to global information such as the agent’s

policies, actions, and observations. The process of training consists of two parts.

Similar to Q-Learning, the critic is updated by minimizing a loss between

the depends on a critic value which receives the global state information x like

observations and a critic value which receives global state information x0 at the

next time step with the exception that the actions have been produced with target

15

policies using the observations at the current time step [21].

L(✓i) = Ex,a,r,x0 [(Qµ
i (x, a1, ..., an)� y)2]

where y = ri + �Qµ
i

0
(x0, a01, ..., a

0
n)|a0j=µ0

j(oj)

Like policy gradient methods, the parameters of the policy are updated in the

direction that maximizes the critic’s output [21].

r✓J(µi) = Ex,a[r✓iµi(ai|oi)raiQ
µ
i (x, a1, ..., an)|ai=µi(oi)]

2.3.4 Training and Evaluation

To train this network, robots must gather sufficient exploration experience through

random exploration for their replay buffer. An experience is a tuple consisting of

the observation o at the current time step, action a, reward r, and observation o
0 at

the next time step. The action a is the direction that is selected by actor network,

and the robot routes a path to the closest frontier target in that direction using the

A* algorithm [29]. The reward r is calculated as follows:

rti = w1c
t
i + w2d

t
i, (1)

where:

• rti is the reward for robot i at time step t

• w1cti is the product between a scalar w1 and cti is the area explored in time

step t.

16

• w2dti is the product between a scalar w2 and dti is the distance travelled in

time step t.

Once the robots have explored a set number of episodes so that the replay

buffer has sufficient experience, robots will continue to gain experience but also

update the weights for training at a set number of time steps. Training consists of

sampling a batch j from the replay buffer and the critic estimates the value of the

robot’s state in that experience.

yj = rji + �Q
0

i(o
0j, a

0

1:N)|a0k=µ
0
k(o

j
k)

where:

• yj is the estimated value of robot i’s state

• rji is the reward of robot i at that sampled time step from experience tuple j

• � is the discount factor

• Q
0
i(o

0j, a
0
1:N)|a0k=µ

0
k(o

j
k)

is the total estimated future rewards. Note that Q0
i is

a copy of the critic network and the inputs are o0j the observation at the next

time step and actions a0
1:N are obtained by passing in the observation at the

current time step ojk into a copy of the actor network µ
0
k.

This value is used in minimizing the following loss function to update the

weights of the critic.

L(✓Qi) =
1

N

X

j

(yj �Qi(o
j, aj1:N))

2 (2)

where:

17

• L(✓Qi) is the critic value loss.

• yj is the estimated value of robot i’s state based on the Bellman Equation

[5].

• Qi(oj, a
j
1:N) is the estimated value of robot i’s state using the critic network,

whose inputs are the observations and actions at the current time step.

The weights of the actor move in the direction of the policy gradient to maxi-

mize the value.

r✓µi
J ⇡

X

j

r✓µi
µi(o

j
i)raiQi(o

j
1:N , a1:N) (3)

where:

• r✓µi
J is the gradient of the cost function for the actor

• r✓µi
µi(o

j
i) is the gradient of action with respect to the actor network param-

eters

• raiQi(o
j
1:N , a1:N)) is the gradient of the value of the robot’s state with re-

spect to the action

Note that during evaluation, robots explore an environment with the actor

choosing an action at each time step and never use the critic.

18

3 Methods

As described in the introduction, the scope of this thesis is to develop a USAR

simulation environment and then attempt to reproduce the performance of our

selected method: DME-DRL. In this section we will first describe the design of

our simulation before diving into the modifications we made in the DME-DRL

algorithm.

3.1 Simulation Design

3.1.1 Environment

Originally DME-DRL was trained on 100 maps and tested on the HouseExpo

dataset, which is a collection of 2D indoor floor plans [30]. DME-DRL selected

100 floor plans from HouseExpo and resizes them to a 200x200 array.

Figure 7: A HouseExpo floor plan (left), compared with a randomly generated
grid map (right). Note that white indicates free space and black indicates obsta-
cles.

In order to better simulate the clutter in a USAR environment, we trained and

tested on 20x20 randomly generated grid worlds where the obstacle density is

randomly chosen between 30% to 40% so it experiences a variety of cluttered

19

scenes. To follow the original training scheme, we trained on a set of 100 ran-

domly generated maps. The obstacle locations are also randomly generated to

create an unstructured space. In this cluttered space exploration becomes much

more challenging, with a greater number of obstacles that can represent debris or

holes in the floor, robots can end up in far more dead ends and might discover it

is not possible to fully explore the environment. With fewer possible paths robots

are inclined to run into one another and retrace each other’s exploration. Hence,

high clutter environments also test the algorithm’s effectiveness in dispersing the

robots.

3.2 Robot Design

3.2.1 Scan Protocol

The robots in DME-DRL used a laser sensor with a circular range of 40 to scan the

environment for robots, obstacles, and free space at each time step. The methods

proposed by our lab involve robots with a laser sensor with a grid range of 4

instead. A robot can only see a cell within its range so long as there is no obstacle

located along the line of sight calculated by the Bresenham algorithm [31].

20

Figure 8: Range for DME-DRL Robot Sensor (left), compared with range for
Benchmark Robot Sensor (right). Note that blue (left) and gray (right) cells repre-
sent unknown cells, while purple (left) and white (right) cells represent free space.
The yellow square on the left is the robot and the blue square on the right is the
robot.

3.2.2 Communication Protocol

DME-DRL experiments with three communication protocols between robots:

1. Complete Communication: robots share their maps with each other if they

are within the broad synchronization range.

2. Layered Communication: robots record each other’s positions if they are

within the broad synchronization range and share their maps if they are

within the smaller communication range.

3. No Communication: robots do not communicate any information with each

other.

Our lab is interested in a communication protocol with a single communica-

tion range. Robots share their maps and record each others’ positions if they are

within the communication range.

After our modifications to the scanning and communication protocol, we re-

placed their edge detection method to detect frontier cells and instead mark free

21

Figure 9: Range for Benchmark Robot Sensor without obstacles (left), compared
with range for Benchmark Robot Sensor with obstacles (right). The blue lines
indicate the lines of sight from the robot.

cells that neighbour at least one unknown cell as frontier cells. When merging

maps together, we check if each of the cells in each of the frontier fulfills the

above condition.

22

Figure 10: Robot map before communication (top), compared with robot map
after communication (bottom). Note that the black cells indicate obstacles, the
gray cells unexplored area, and white cells are free space. Free cells with F are
also frontier cells, which mean that they neighbour an unexplored cell. The robot
is demarcated in red with the id of 0.

23

Figure 11: Visualization of the merged team robot map.

24

3.3 Modifications to DME-DRL Algorithm

The authors of DME-DRL have published their implementation on Github [32].

However, we have made several modifications to benchmark against the methods

proposed by our lab. In addition, we have developed visualizations to verify the

logic of the modifications.

3.3.1 Network Architecture

We reduced the number of weights in the LSTM layer of the actor and critic

networks since the robot maps decreased in size from 200x200 to 20x20.

3.3.2 Training Hyperparameters

We increased the magnitude of the hyperparameters in the reward function while

maintaining the reward ratio. We set w1 = 0.02 and w2 = 1. We discovered that

this decrease the number of steps by 10% during training. In addition, we set the

heuristic to the Euclidean distance in their A* implementation to be consistent

with our lab’s pathfinding methods. Other than these changes, the hyperparame-

ters match those of the DME-DRL implementation.

3.3.3 Communication Protocol

In the original algorithm, each robot moves to its destination selected at the be-

ginning of each time step one at a time as shown in Figure 12.

The robot does not communicate with others until it has reached its destina-

tion. This means that each robot is not using the latest information to make a

decision on where to go even if it has been communicated to them. As a result, in

25

Figure 12: Illustration of the sequential order in DME-DRL. The robots begin the
time step in the top left image. First robot 0 moves to its destination (top right),
second moves robot 1 (bottom left), and third moves robot 2 (bottom right). When
robot 2 has reached its destination, the time step has completed.

the original implementation robots use stale information to plan a path that could

traverse through recently explored territory.

Our solution to this problem is stopping the robot that is in motion when it

comes into the communication range of one or more robots. For example, if robot

0 comes into the range of robot 1, it stops and the two robots communicate and

merge maps. Next, robot 1 feeds these new observations into its actor network

26

and selects a new destination along the frontier. Robot 1 will move towards its

destination unless it comes into communication range of other team members it

has already seen i.e. robot 0. The set of robots that is has seen is cleared after all

the robots have reached their chosen frontier cell.

With this modification, we ensure each robot decides where to go using the

latest information. In addition, stopping the robots when they come into commu-

nication range will also count the number of local interactions or the times when

the robots come into communication range more accurately.

3.4 Testing

We generated 10 20x20 grid world test environments with obstacle density of 30-

40%. All of these environments are fully explorable. We measure the performance

of DME-DRL’s exploration against the following metrics:

1. Total steps: We count the total time steps that the robots have taken for

exploration. In a time step, each team member has moved one cell.

2. Total Travel Distance: We measure the total distance that is travelled by the

robot team. If a robot moves one cell in the cardinal directions, that corre-

sponds to a distance of 1. However, if a robot moves one cell diagonally

that corresponds to a distance of
p
2.

3. Number of Local Interactions: We count the number of times that one or

more robots come within communication range of each other.

4. Objective Function Value: We measure the efficiency of the team’s explo-

27

ration with respect to a custom metric:

hX

j=1

D�1
j |Ej|, (4)

where:

• h is the total number of steps.

• D�
j 1 is the inverse of the joint distance travelled for time step j

• |Ej| is the percentage of total area explored for time step j. Using per-

centages allow us to compare the objective function value in different

environments because we are normalizing the range.

Since the objective function value may vary due to the number of steps

in an episode, we interpolate the total area explored and the joint distance

travelled to 9000 data points. This number gives fine grained plots for per-

centage of total area explored vs joint distance travelled.

We compared these metrics against implementations of the traditional methods

we have described in the literature review: Nearest Frontier, Utility-Based, and

Planning Based by a previous thesis student. All methods used a team of 3 robots.

These methods were not designed with considerations of robot unreliability. As

mentioned in the introduction, robot team members can fail. We introduced the

following probabilities of failure:

• Scan: a robot has a 10% chance to miss recording a cell in their field of

view.

28

• Communication: a robot may fail to communicate with its team member. If

it fails, each robot is unable to communicate for the next 7 steps. We tested

in environments with 0, 20, 50, 100% of communication failure.

• Action: a robot has a 10% chance to fail at its intended action. If it fails,

then a robot randomly picks a free neighbouring cell and moves there.

To make a fair comparison with traditional methods, we did not train DME-

DRL with failure probabilities. However, we subjected all methods to the proba-

bilities of the failure in the test environments.

29

4 Results and Discussion

In this section we will present the training plots for our final model as well as the

results that our modified DME-DRL achieved in the test environment.

4.1 Training

As expected in Figure 13, we see the 3 critic losses converge as the training pro-

ceeds, which means the critic becomes more accurate in judging the value of the

policy. Interestingly, the actor loss, which is the negated critic value, also con-

verges as time progresses, so the actor produces actions which have the same

value according to the critic.

Figure 13: Loss plot for actor (left) and critic (right, see equation 2) networks
during training. We used three robots to explore the environment, hence we track
three critic and actor losses each.

30

While we expect the mean and individual rewards to increase as it explores

more maps, we see in Figure 14 while we expect the mean and individual rewards

to increase, it shortly plateaus after recovering from an initial drop. This suggests

that the training process has not improved a robot’s ability to explore efficiently.

In other words, the robot’s selection of a target is slightly better than random. It is

important to note that in reinforcement learning, the reward plots take precedence

over the loss plots.

Figure 14: Team mean reward (left) and individual reward (right) (see equation 1)
plot during training. We used three robots to explore the environment, hence we
track the rewards of the three robots in the individual reward plot.

To get a better idea of the learning process of the robot during training we also

recorded other metrics for debugging purposes. For efficient exploration, we are

interested in how many time steps the robots take to complete a training episode.

The range in the number of steps is about 3 steps. If the algorithm was learning

effectively, we would expect the distance to decrease, but this behavior is not

produced in Figure 15. This may be a fault with the network architecture.

Figure 16 shows the progress of team over several time steps in a training

exploration episode.

31

Figure 15: Number of steps (top) and joint distance travelled (bottom) during
training.

32

Figure 16: Progress of team exploration over at four different time steps. The
chronological order of steps is from left to right, and top to bottom. Observe how
the team diffuses throughout the environment to explore different parts of the map.

33

4.2 Test

We tested in 10 different 20x20 randomly generated grid worlds with an obstacle

density of 30-40%. For each map we tested with 4 different probabilities of com-

munication success: 0, 50, 80, 100. For each map and probability we started a

team of 3 robots in the four different corners of the environment.

These environments were fully explorable, meaning that all cells could be

scanned by the team. As mentioned before in 3.4 we introduce the probability of

failure in the test environments. We included the results from Nearest Frontier,

Utility-Based, and Planning Based to provide a benchmark for DME-DRL.

4.2.1 Steps and Distance

Figure 17 shows the number of time steps taken and the team’s distance travelled

by each of the methods in the test environment averaged over each probability

of communication success. The number of steps has increased from 70 during

training to 81. This significant increase comes from the unreliability noise and a

weakness of DME-DRL. The authors state that it performs poorly when we start

the robots close together as in Figure 18 [7]. In the other communication schemes

it performs comparably with traditional methods.

34

Figure 17: Average Number of Total Steps and Average Total Distance in Test
Environment

35

Figure 18: Close initial positions in test environment induce poor performance in
DME-DRL.

36

DME-DRL was published to outperform Nearest Frontier by 3% in the number

of steps in the 100% communication case and without probabilities of failure. In

our tests, DME-DRL underperformed Nearest Frontier by 6%. Thus DME-DRL’s

performance in the test environment was slightly degraded from Figure 19. This

could have occurred for several reasons:

• The authors do not include failure in action, communication, or scan.

• The authors trained DME-DRL in environments without clutter.

• The test environment starts robots close together which exploits their weak-

ness.

37

Figure 19: DME-DRL published results for the number of steps

38

DME-DRL only published plots for distance, but Figure 20 shows it performs

similarly with Nearest Frontier.

Figure 20: DME-DRL published results for distance

4.3 Local Interactions

In DME-DRL the robots come within communication range of each other as fre-

quently as Nearest Frontier. A high number of local interactions suggests explo-

ration may be inefficient because if robots stay close together this reduces the new

area that can be explored in a time step. DME-DRL has a high number of local

interactions because there is no factor in the reward function found in Equation 1

that explicitly discourages the robots from staying apart. Robots are only rewarded

for exploring new area and punished for wasting time steps in exploration. Fur-

thermore, if robots start close together, their observations will be identical at the

beginning so they select the same directions, travel to the same area, and waste

exploration time.

39

Figure 21: Average Number of Local Interactions in the Test Environment

40

4.4 Objective Function

We defined an objective function in Equation 4 to better measure the efficiency

of exploration. On a percentage of area explored vs joint distance travelled basis,

DME-DRL came second in efficiency to the Planning Based Method in Figure 22.

This is promising because if we could improve the training process, DME-DRL

may yield more efficient explorations.

Figure 22: Average Objective Function Values in the Test Environment

It becomes more clear that DME-DRL initially lags in exploration rate from its

weakness compared to its peers but finishes right after the Planning Based method

in Figure 23.

41

Figure 23: Interpolated Percentage of Area Explored vs Total Distance Travelled
in the Test Environment

42

4.5 Parallel World

In this subsection we describe our attempt to program the robots to move in paral-

lel for accurately modelling an exploration mission. We made significant changes

to the codebase, but initially were unable to train the parallel algorithm. We no-

ticed the parallel algorithm took 5000 time steps but was unable to complete an

exploration episode in Figure 24. In comparison, our sequential sequential algo-

rithm took 70 steps to complete and exploration episode during training.

Figure 24: Number of steps (top) and percentage of area explored at the end of
each episode (bottom) during training of a parallel algorithm without noise.

We found that this occurred because robots would get stuck against a wall and

repeatedly move in the direction of the wall. This is because DME-DRL does not

encourage exploration during training, robots always exploit the best action that

they have learned. However, early in training they would be learning from a ran-

dom policy. To remedy this problem, we introduced noise to the action selection

so that robots could break free from this predicament by taking a different action

to randomly explore its options [5]. This noise would decay over the time as the

43

robots learned a better policy. We ran many experiments varying the learning,

reward and action noise parameters. With this parallel version of DME-DRL, the

robots were able to complete more exploration episodes, but they still took 900

steps to complete an episode as shown in Figure 25.

Figure 25: Number of steps (top) and percentage of area explored at the end of
each episode (bottom) during training of a parallel algorithm with noise.

44

5 Conclusion

We achieved the two goals of our thesis: developing a simulation for USAR en-

vironments for training and testing DRL methods and benchmarking the perfor-

mance of DME-DRL in this simulation. Its test results of a 6% degradation from

Nearest Frontier was worse than its published performance of a 3% improvement

over Nearest Frontier in the number of steps occured for three main reasons:

• DME-DRL was not designed with considerations of the probability of failed

action, communication, scan

• DME-DRL was initially trained and tested in floor plans with no obstacles

• DME-DRL was tested with the robots starting close together which is known

to hamper its performance

Even with this discrepancy in results, DME-DRL has fulfilled its purpose as

a benchmark. We have confirmed the reproducibility problem exists in DRL, and

future researchers can use our simulation and benchmark algorithms for to develop

their multi-robot exploration methods.

However, DME-DRL’s performance as a learning method has much to be de-

sired in comparison to traditional methods. After all, the exploration rate results

indicate DME-DRL shows promise.

45

For the remainder of this section, we propose several research directions for

the future. It may be worthwhile to explore the fundamental question of why

DME-DRL was unable to learn and improve in performance throughout training.

Perhaps by further tuning the hyperparameters, adding noise to decision making

during training, or revamping the network architecture design, DME-DRL could

outperform traditional exploration methods.

Such an achievement may require changes to the algorithm on a fundamen-

tal level. If we could continue our work on improving the performance of our

implementation of DME-DRL that programmed the robots to move in parallel.

Programming the robots to move in parallel offers more opportunities for robots

to communicate and possibly explore more area per time step.

In the results, we also showed DME-DRL had a high number of local inter-

actions. This means that exploration could be inefficient because the robots were

staying close together. If we redesign the reward function to punish a robot for

being in the vicinity of another robot unless it can benefit from communication,

we can reduce unnecessary local interactions and potentially reduce the number

of time steps.

As for the local interactions which are necessary robots could share where they

plan to explore during communication. This information helps the communicators

coordinate and travel to different areas that would maximize the joint area.

The aforementioned communication scheme is one way we can introduce

higher level planning. Instead of the robot deciding the primitive direction it

should immediately head towards, higher level planning suggests that the robot

should decide on where to go over a longer time horizon and better coordinate

with its team members [33].

46

References

[1] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the

control perspective,” Journal of Intelligent & Robotic Systems, vol. 72, 11

2013.

[2] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learn-

ing robot for search and rescue applications: Exploration in unknown clut-

tered environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2,

pp. 610–617, 2019.

[3] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collaborative

multi-robot exploration,” in Proceedings 2000 ICRA. Millennium Confer-

ence. IEEE International Conference on Robotics and Automation. Symposia

Proceedings (Cat. No.00CH37065), vol. 1, pp. 476–481 vol.1, 2000.

[4] C. Stachniss, O. Mozos, and W. Burgard, “Efficient exploration of unknown

indoor environments using a team of mobile robots,” Annals of Mathematics

and Artificial Intelligence, vol. 52, p. 205–227, 2008.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[6] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer,

F. d’Alché Buc, E. Fox, and H. Larochelle, “Improving reproducibility in

machine learning research (a report from the neurips 2019 reproducibility

program),” 2020.

47

[7] D. He, D. Feng, H. Jia, and H. Liu, “Decentralized exploration of a struc-

tured environment based on multi-agent deep reinforcement learning,” in

2020 IEEE 26th International Conference on Parallel and Distributed Sys-

tems (ICPADS), pp. 172–179, 2020.

[8] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-

robot coordination,” International Journal of Advanced Robotic Systems,

vol. 10, no. 12, p. 399, 2013.

[9] R. G. Colares and L. Chaimowicz, “The next frontier: Combining infor-

mation gain and distance cost for decentralized multi-robot exploration,” in

Proceedings of the 31st Annual ACM Symposium on Applied Computing,

SAC ’16, (New York, NY, USA), p. 268–274, Association for Computing

Machinery, 2016.

[10] A. D. Haumann, K. D. Listmann, and V. Willert, “Discoverage: A new

paradigm for multi-robot exploration,” in 2010 IEEE International Confer-

ence on Robotics and Automation, pp. 929–934, 2010.

[11] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot coor-

dination: A survey and analysis,” Proceedings of the IEEE, vol. 94, no. 7,

pp. 1257–1270, 2006.

[12] R. G. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,

and H. L. S. Younes, “Coordination for multi-robot exploration and map-

ping,” in Proceedings of the Seventeenth National Conference on Artificial

Intelligence and Twelfth Conference on Innovative Applications of Artificial

Intelligence, p. 852–858, AAAI Press, 2000.

48

[13] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-robot exploration con-

trolled by a market economy,” in Proceedings 2002 IEEE International

Conference on Robotics and Automation (Cat. No.02CH37292), vol. 3,

pp. 3016–3023 vol.3, 2002.

[14] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib, “Coordinated multi-robot

exploration under communication constraints using decentralized markov

decision processes,” in Proceedings of the Twenty-Sixth AAAI Conference

on Artificial Intelligence, AAAI’12, p. 2017–2023, AAAI Press, 2012.

[15] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in

Proceedings 1997 IEEE International Symposium on Computational Intelli-

gence in Robotics and Automation CIRA’97. ’Towards New Computational

Principles for Robotics and Automation’, pp. 146–151, July 1997.

[16] A. Bautin, O. Simonin, and F. Charpillet, “Minpos : A novel frontier al-

location algorithm for multi-robot exploration,” in Intelligent Robotics and

Applications (C.-Y. Su, S. Rakheja, and H. Liu, eds.), (Berlin, Heidelberg),

pp. 496–508, Springer Berlin Heidelberg, 2012.

[17] L. Matignon, L. Jeanpierre, and A.-i. Mouaddib, “Coordinated multi-robot

exploration under communication constraints using decentralized markov

decision processes,” AAAI 2012, 02 2013.

[18] M. Geng, X. Zhou, B. Ding, H. Wang, and L. Zhang, Learning to Cooperate

in Decentralized Multi-robot Exploration of Dynamic Environments: 25th

International Conference, ICONIP 2018, Siem Reap, Cambodia, December

13–16, 2018, Proceedings, Part VII, pp. 40–51. 01 2018.

49

[19] M. Geng, K. Xu, X. Zhou, B. Ding, H. Wang, and L. Zhang, “Learning to

cooperate via an attention-based communication neural network in decen-

tralized multi-robot exploration,” Entropy, vol. 21, no. 3, 2019.

[20] Z. Chen, B. Subagdja, and A.-H. Tan, “End-to-end deep reinforcement learn-

ing for multi-agent collaborative exploration,” in 2019 IEEE International

Conference on Agents (ICA), pp. 99–102, 2019.

[21] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent

actor-critic for mixed cooperative-competitive environments,” 2020.

[22] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent communica-

tion with backpropagation,” 2016.

[23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-

ing. Springer Series in Statistics, New York, NY, USA: Springer New York

Inc., 2001.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger, eds.), vol. 25, Curran Associates, Inc., 2012.

[25] R. C. Staudemeyer and E. R. Morris, “Understanding lstm – a tutorial into

long short-term memory recurrent neural networks,” 2019.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,

C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,

50

S. Legg, and D. Hassabis, “Human-level control through deep reinforcement

learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[27] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Ad-

vances in Neural Information Processing Systems (S. Solla, T. Leen, and

K. Müller, eds.), vol. 12, MIT Press, 2000.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,”

2019.

[29] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-

termination of minimum cost paths,” IEEE Transactions on Systems Science

and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[30] L. Tingguang, H. Danny, L. Chenming, Z. Delong, W. Chaoqun, and M. Q.-

H. Meng, “Houseexpo: A large-scale 2d indoor layout dataset for learning-

based algorithms on mobile robots,” arXiv preprint arXiv:1903.09845, 2019.

[31] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM

Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[32] “hedingjie / DME-DRL kernel description.”

https://github.com/hedingjie/DME-DRL/tree/master/src.

[33] C. Amato, G. Konidaris, L. P. Kaelbling, and J. P. How, “Modeling and

planning with macro-actions in decentralized pomdps,” J. Artif. Int. Res.,

vol. 64, p. 817–859, jan 2019.

51

52

